NOTES

TMC-86A, B and TMC-96, New Proteasome Inhibitors from *Streptomyces* sp. TC 1084 and *Saccharothrix* sp. TC 1094

II. Physico-chemical Properties and Structure Determination

YUTAKA KOGUCHI, JUN KOHNO, SHIN-ICHI SUZUKI, MAKI NISHIO, KOHEI TAKAHASHI, TETSUO OHNUKI* and SABURO KOMATSUBARA

Basic Technology Department, Discovery Research Laboratory, Tanabe Seiyaku Co., Ltd., 2-50 Kawagishi-2-chome, Toda-shi, Saitama 335-8505, Japan

(Received for publication September 13, 1999)

TMC-86A, B and TMC-96, new proteasome inhibitors have been isolated from the fermentation broth of *Streptomyces* sp. TC 1084 and *Saccharothrix* sp. TC 1094, respectively¹⁾. In the preceding paper, we have reported the taxonomy of producing strains, production, isolation, and biological activities of TMC-86A, B and TMC-96¹⁾. Here we describe the physico-chemical properties and structure determination of TMC-86A, B and TMC-96.

The physico-chemical properties and NMR spectral data

of TMC-86A, B and TMC-96 are summarized in Tables 1 and 2, respectively. The molecular formulas of TMC-86A, B and TMC-96 were determined as $C_{16}H_{26}N_2O_6$, $C_{20}H_{34}N_2O_7$ and $C_{18}H_{32}N_2O_6$, respectively, on the basis of their HRFAB-MS and 1H and ^{13}C NMR spectral data. Their IR spectra exhibited common signals for the presence of hydroxyl $(3300\sim3400~\rm cm^{-1})$, ketone or ester $(1720~\rm cm^{-1})$, and amide $(1640\sim1650,1540~\rm cm^{-1})$ groups.

The structure of TMC-86A was determined by the analyses of 1D and 2D NMR and MS spectra. The ¹³C NMR spectrum displayed 16 signals composed of two $-CH_3$, six $-CH_2$ -, one $=CH_2$, two >CH-, two quaternary carbons, and three carbonyl carbons. The ¹H NMR spectrum showed four D₂O exchangeable protons. In the ¹H-¹H COSY spectrum, four sequential proton networks of -8CH₂-OH, -NH-4CH-5CH₂-, -NH-2'CH-3'CH₂-OH and $-2^{"}$ CH₂ $-3^{"}$ CH₂ $-4^{"}$ CH₃ were observed (Fig. 1). The presence of the epoxy ring was indicated by the chemical shift of C-1 methylene ($\delta_{\rm C}$ 47.9, $\delta_{\rm H}$ 3.07 and 3.08), and characteristic coupling constants: ${}^{1}J_{\text{C-H}}=180.3\,\text{Hz}$ and ${}^{\text{gem}}J_{\text{H-H}}=5.6\,\text{Hz}$. The connection of these structural fragments was deduced from the observation of the HMBC correlations as shown in Fig. 1. The correlations from C-3 (δ 206.2) to H-4, H-5, H-1 and H-8; and from C-2 (δ 62.9) to H-1 and H-8 (Fig. 1), along with the existence of the epoxy ring, indicated the presence of the epoxy- β -aminoketone moiety. A sequential loss of the assigned fragments was seen in the EI-MS

Table 1. Physico-chemical properties of TMC-86A, B and TMC-96.

	TMC-86A	TMC-86B	TMC-96	
Appearance	Colorless oil	White powder	Colorless stickly solid	
$\left[oldsymbol{lpha} ight]_{ m D}^{20}$	$+10^{\circ}$ (c 0.27, H ₂ O)	$+30^{\circ}$ (c 0.41, H ₂ O)	+25° (c 0.45, MeOH)	
Molecular formula	$C_{16}H_{26}N_2O_6$	$C_{20}H_{34}N_2O_7$	$C_{18}H_{32}N_2O_6$	
EI-MS(m/z)	342 (M) ⁺	414 (M) ⁺	372 (M)+	
HRFAB-MS (m/z)				
Found	343.1863 (M+H)+	415.2430 (M+H)+	373.2343 (M+H)+	
Calcd.	$343.1869 \text{ for } C_{16}H_{27}N_2O_6$	415.2446 for $C_{20}H_{35}N_2O_7$	373.2339 for $C_{18}H_{33}N_2O_6$	
${ m UV}~\lambda_{ m max}~({ m MeOH})$	End absorption	End absorption	End absorption	
$IR \nu_{max} (KBr) cm^{-1}$	3400, 3070, 2960, 2940,	3400, 3070, 2960, 2940,	3300, 3070, 2960, 2930,	
	1720, 1650, 1540, 1460,	1720, 1640, 1540, 1460,	1720, 1640, 1540, 1465,	
	1380, 1250, 1220, 1050	1380, 1250, 1220, 1050	1385, 1370, 1215, 1045	
Solubility				
soluble in	H ₂ O, DMSO, MeOH,	H ₂ O, DMSO, MeOH,	DMSO, MeOH, acetone,	
	EtOH	EtOH	EtOAc, CHCl ₃	
insoluble in	n-hexane	n-hexane	H ₂ O, <i>n</i> -hexane	

Table 2. 1 H and 13 C NMR data of TMC-86A, B (in DMSO- d_6) and TMC-96 (in CDCl₃).

Position -	TMC-86A		TMC-86B		TMC-96	
	$\delta_{\rm c}$	$\delta_{ m H}$	$\delta_{\rm c}$	δ_{H}	$\delta_{\rm c}$	δ_{H}
1	47.9 t	3.07 (d, 5.6)	47.9 t	3.06 (d, 5.4)	49.3 t	3.10 (d, 5.0)
		3.08 (d, 5.6)		3.08 (d, 5.4)		3.33 (d, 5.0)
2	$62.9 \mathrm{\ s}$		$62.9 \mathrm{\ s}$		$62.2 \mathrm{s}$	
3	$206.2 \mathrm{\ s}$		206.3 s	•	$207.6 \mathrm{\ s}$	
4	50.2 d	4.55 (ddd, 3.2, 7.4, 9.9)	50.2 d	4.55 (ddd, 3.3, 7.4, 9.9)	51.4 d	4.51 (m)
5	36.6 t	2.00 (dd, 9.9, 14.4)		2.00 (dd, 9.9, 14.5)		
		2.42 (dd, 3.2, 14.4)	36.5 t	2.41 (dd, 3.3, 14.5)	$38.8 \mathrm{\ t}$	1.30 (m)
6	140.6 s		$140.6 \mathrm{\ s}$			1.61 (m)
7	113.2 t	4.75 (bs)	113.2 t	4.74 (bs)	25.3 d	1.66 (m)
		4.78 (bs)		4.78 (bs)	21.1 q	0.93 (d, 6.3)
8 59.5	59.5 t	3,39 (dd, 5.2, 12.5)	59.5 t	3.39 (dd, 5.2, 12.5)	61.5 t	3.75 (dd, 7.0, 12.7
		4.09 (dd, 6.6, 12.5)		4.07 (dd, 6.5, 12.5)		4.20 (dd, 6.4, 12.7
9	$21.8\mathrm{q}$	1.70 (s)	$21.9\mathrm{q}$	1.70 (s)	23.3 q	0.94 (d, 6.3)
1'	170.3 s		170.3 s		171.5 s	
2'	54.5 d	4.31 (m)	54.5 d	4.30 (m)	56.2 d	4.42 (dd, 2.5, 7.5)
3	61.6 t	3.46 (m)	61.6 t	3.46 (m)	66.4 d	4.30 (m)
		3.56 (m)		3.54 (m)		` '
4'		,		、 ,	17.7 q	1.15 (d, 6.4)
1"	172.0 s		172.2 s		173.5 s	
2"	37.0 t	2.10 (t, 7.4)	35.2 t	2.10 (t, 7.4)	$45.8 \mathrm{t}$	2.12 (m)
3"	$18.5\mathrm{t}$	1.49 (tq. 7.4, 7.4)	25.9 t	1.43 (m)	26.3 d	2.10 (m)
4"	13.5 q	0.85 (t, 7.4)	$23.5 \mathrm{t}$	1.23-1.35 (m)	22.5 q	0.96 (m)
5"	•	, ,	43.4 t	1.23-1.35 (m)	22.5 q	0.96 (m)
6"			$68.7 \mathrm{s}$			
7", 8"			$29.2 \ \mathbf{q}$	1.05 (s)		
4-NH		7.94 (d, 7.4)		7.95 (d, 7.4)		7.13 (d, 7.4)
8-OH		5.05 (dd, 5.2, 6.6)		5.04 (dd, 5.2, 6.5)		2.27 (t-like, \sim 7)
2'-NH		7.74 (d, 8.2)		7.72 (d, 8.1)		6.46 (d, 7.5)
3'-OH		4.76 (t-like)		4.74 (t, 5.6)		3.70 (d, 3.5)
6"-OH				4.01 (s)		

spectrum (Fig 1).

The ¹H and ¹³C NMR data of TMC-86B corresponded well to those of TMC-86A except for the signals of the fatty acid moiety (C-2" to C-4" in TMC-86A). The *n*-butanoyl group in TMC-86A was replaced by 6-hydrooxy-6-methlheptanoyl group in TMC-86B. Thus the planar structure of TMC-86B was determined to be the 6"-hydroxyl analog of eponemycin^{2,3}).

The structure determination of TMC-96 was accomplished in the same way as described above by the NMR studies involving ¹H-¹H COSY, HMQC, HMBC and

EI-MS fragmentation.

The configuration of serine in TMC-86A and B, and threonine in TMC-96 was determined to be L by chiral TLC analyses of their acid hydrolysate. The stereochemistry at C-2 and C-4 remains to be determined.

Acknowledgments

We thank Ms. NAOKO FUKUI, Ms. NORIKO OHASHI, and Ms. SONOKO SHINA for measuring spectra.

Fig. 1. Structure of TMC-86A, B and TMC-96.

References

- KOGUCHI, Y.; J. KOHNO, S. SUZUKI, M. NISHIO, K. TAKAHASHI, T. OHNUKI & S. KOMATSUBARA: TMC-86A, B and TMC-96, new proteasome inhibitors from *Streptomyces* sp. TC 1084 and *Saccharothrix* sp. TC 1094. I. Taxonomy, fermentation, isolation, and biological activities. J. Antibiotics 52: 1069~1076, 1999
- SUGAWARA, K.; M. HATORI, Y. NISHIYAMA, K. TOMITA, H. KAMEI, M. KONISHI & T. OKI: Eponemycin, a new antibiotic active against B16 melanoma. I. Production, isolation, structure and biological activity. J. Antibiotics 43: 8~18, 1990
- 3) Hoshi, H.; T. Ohnuma, S. Aburaki, M. Konishi & T. Oki: A total synthesis of 6,7-dihydroeponemycin and determination of stereochemistry of the epoxide ring. Tetrahedron Lett. 34: 1047~1050, 1993